其他
Cell子刊重磅:14000+字详解菌群与癌症的8大关键性问题
摘要
微生物组与癌症:充满未知
Box1:致癌病毒和微生物组
Box2:微生物在癌症中的双重作用
微生物组通过代谢对癌症的间接影响
Box3:研究微生物组在癌症中作用
的新兴技术
Box4:环境对微生物组成的影响
及其在癌症发病中的作用
微生物组对癌症的直接影响
微生物组与癌症免疫疗法
治疗后恢复微生物组
结束语
除细菌外,人类微生物组的其他成员,如古菌,真菌和病毒(包括噬菌体)对癌症重要吗?
我们如何利用组学方法将微生物组成和功能与其他相关数据(如栖息地,宿主信息和其他变量)相结合?
人类微生物组是否在移民与癌症发病率之间的联系中发挥作用?
为什么微生物移植的成功与否因患者而异?
可以利用肠道微生物影响中枢神经系统的能力来控制癌症患者甚至癌症发展中的疼痛吗?
我们能否设计微生物组将对免疫疗法无反应的人转变为有反应的人?
1.de Martel, C. et al. (2012) Global burden of cancersattributable to infections in 2008: a review and synthetic analysis. LancetOncol. 13, 607–6152.Turnbaugh, P.J. et al. (2006) An obesity-associatedgut microbiome with increased capacity for energy harvest. Nature 444,1027–10313.Ezenwa, V.O. et al. (2012) Animal behavior and themicrobiome. Science 338, 198–1994.Jobin, C. (2018) Precision medicine using microbiota.Science 359, 32–345.Scott, A.J. et al. (2019) International CancerMicrobiome Con- sortium consensus statement on the role of the human microbiomein carcinogenesis. Gut 68, 1624–16326.Arends, J. (2010) Metabolism in cancer patients.Anticancer Res. 30, 1863–18687.Fujisaka, S. et al. (2018) Diet, genetics, and the gutmicrobiome drive dynamic changes in plasma metabolites. Cell Rep. 22, 3072–30868.Ma, C. et al. (2018) Gut microbiome-mediated bile acidmetabo- lism regulates liver cancer via NKT cells. Science 360, eaan59319.Kwa, M. et al. (2016) The intestinal microbiome andestrogen receptor-positive female breast cancer. J. Natl. Cancer Inst.108,djw02910.Baker, J.M. et al. (2017) Estrogen–gut microbiomeaxis: physiological and clinical implications. Maturitas 103, 45–5311.Devendran, S. et al. (2017) Identification andcharacterization of a 20beta-HSDH from the anaerobic gut bacteriumButyricicoccus desmolans ATCC 43058. J. Lipid Res. 58, 916–92512.Devendran, S. et al. (2018) The desA and desB genesfrom Clostridium scindens ATCC 35704 encode steroid-17,20-desmolase. J. LipidRes. 59, 1005–101413.Zimmermann, M. et al. (2019) Mapping human microbiomedrug metabolism by gut bacteria and their genes. Nature 570, 462–46714.Schulfer, A.F. et al. (2019) The impact of early-lifesub-therapeutic antibiotic treatment (STAT) on excessive weight is robustdespite transfer of intestinal microbes. ISME J. 13, 1280–129215.Wang, Z. et al. (2011) Gut flora metabolism ofphosphatidyl- choline promotes cardiovascular disease. Nature 472, 57–6316.Carmona-Fontaine, C. et al. (2013) Emergence ofspatial struc- ture in the tumor microenvironment due to the Warburg effect. Proc.Natl. Acad. Sci. 110, 19402–1940717.Carmona-Fontaine, C. et al. (2017) Metabolic originsof spatial organization in the tumor microenvironment. Proc. Natl. Acad. Sci. U.S. A. 114, 2934–293918.Colegio, O.R. et al. (2014) Functional polarizationof tumour-associated macrophages by tumour-derived lactic acid. Nature 513,559–56319.Sharon, G. et al. (2016) The central nervous systemand the gut microbiome. Cell 167, 915–93220.Ben-Shaanan, T.L. et al. (2018) Modulation ofanti-tumor immunity by the brain's reward system. Nat. Commun. 9, 272321.Alcock, J. et al. (2014) Is eating behaviormanipulated by the gastrointestinal microbiota? Evolutionary pressures andpotential mechanisms. Bioessays 36, 940–94922.Kiraly, D.D. et al. (2016) Alterations of the hostmicrobiome affect behavioral responses to cocaine. Sci. Rep. 6, 3545523.Rousseaux, C. et al. (2007) Lactobacillus acidophilusmodu- lates intestinal pain and induces opioid and cannabinoid receptors. Nat.Med. 13, 35–3724.Sivan, A. et al. (2015) Commensal Bifidobacteriumpromotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350,1084–108925.Zhou, Y.J. et al. (2017) Cancer killers in the humangut microbiota: diverse phylogeny and broad spectra. Oncotarget 8, 49574–4959126.Geller, L.T. et al. (2017) Potential role ofintratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine.Science 357, 1156–116027.Pushalkar, S. et al. (2018) The pancreatic cancermicrobiome promotes oncogenesis by induction of innate and adaptive immunesuppression. Cancer Discov. 8, 403–41628.Thomas, R.M. et al. (2018) Intestinal microbiotaenhances pancreatic carcinogenesis in preclinical models. Carcinogenesis 39,1068–107829.Kostic, A.D. et al. (2012) Genomic analysis identifiesassociation of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–29830.Mojica, C.M. et al. (2018) Interventions promotingcolorectal cancer acreening among Latino men: a systematic review. Prev.Chronic Dis. 15, E3131.Nistal, E. et al. (2015) Factors determiningcolorectal cancer: the role of the intestinal microbiota. Front. Oncol. 5, 22032.Arthur, J.C. et al. (2012) Intestinal inflammationtargets cancer-inducing activity of the microbiota. Science 338, 120–12333.Markowitz, S.D. and Bertagnolli, M.M. (2009)Molecular origins of cancer: molecular basis of colorectal cancer. N. Engl. J. Med.361, 2449–246034.Coker, O.O. et al. (2019) Enteric fungal microbiotadysbiosis and ecological alterations in colorectal cancer. Gut 68, 654–66235.Nakatsu, G. et al. (2015) Gut mucosal microbiomeacross stages of colorectal carcinogenesis. Nat. Commun. 6, 8727 36. Nakatsu,G. et al. (2018) Alterations in enteric virome are associated with colorectalcancer and survival outcomes.
Gastroenterology 155, 529–54137.Yachida, S. et al. (2019) Metagenomic and metabolomicanalyses reveal distinct stage-specific phenotypes of the gut microbiota incolorectal cancer. Nat. Med. 25, 968–97638.Goncalves, M.D. et al. (2019) High-fructose cornsyrup enhances intestinal tumor growth in mice. Science 363, 1345–134939.Ridlon, J.M. et al. (2016) Taurocholic acidmetabolism by gut microbes and colon cancer. Gut Microbes 7, 201–21540.Dejea, C.M. et al. (2014) Microbiota organization isa distinct feature of proximal colorectal cancers. Proc. Natl. Acad. Sci.U. S. A. 111, 18321–1832641.Tomkovich, S. et al. (2019) Human colon mucosalbiofilms from healthy or colon cancer hosts are carcinogenic. J. Clin. Invest.130, 1699–171242.Bullman, S. et al. (2017) Analysis of Fusobacteriumpersistence and antibiotic response in colorectal cancer. Science 358, 1443–144843.Song, S. et al. (2018) The role of bacteria in cancertherapy -enemies in the past, but allies at present. Infect. Agents Cancer 13,9-944.Larkin, J. et al. (2015) Combined nivolumab andipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–3445.Gopalakrishnan, V. et al. (2018) Gut microbiome modulates re- sponse toanti-PD-1 immunotherapy in melanoma patients.Science 359, 97–10346.Matson, V. et al. (2018) The commensal microbiome isassociated with anti-PD-1 efficacy in metastatic melanoma patients.Science 359,104–10847.Routy, B. et al. (2018) Gut microbiome influencesefficacy of PD-1-based immunotherapy against epithelial tumors. Science 359,91–9748.Gharaibeh, R.Z. and Jobin, C. (2019) Microbiota andcancer immunotherapy: in search of microbial signals. Gut 68, 385-288 49.Spor,A. et al. (2011) Unravelling the effects of the environment and host genotypeon the gut microbiome. Nat. Rev. Microbiol. 9, 279–29050.Frankel, A.E. et al. (2017) Metagenomic shotgun sequencingand unbiased metabolomic profiling identify specific human gut mi- crobiota andmetabolites associated with immune checkpoint therapy efficacy in melanomapatients. Neoplasia 19, 848–85551.Bachem, A. et al. (2019) Microbiota-derivedshort-chain fatty acids promote the memory potential of antigen-activated CD8+T cells. Immunity 20, 285–29752.Weber, J.S. et al. (2013) Patterns of onset andresolution of immune-related adverse events of special interest withipilimumab: detailed safety analysis from a phase 3 trial in pa- tients withadvanced melanoma. Cancer 119, 1675–168253.Dubin, K. et al. (2016) Intestinal microbiomeanalyses identify melanoma patients at risk for checkpoint-blockade-inducedcolitis. Nat. Commun. 7, 1039112 Trends in Cancer, Month 2020, Vol. xx, No. xx Trendsin Cancer54.Wang, Y. et al. (2018) Fecal microbiotatransplantation for re- fractory immune checkpoint inhibitor-associatedcolitis. Nat. Med. 24, 1804–180855.Benson 3rd, A.B. et al. (2004) Recommended guidelinesfor the treatment of cancer treatment-induced diarrhea. J. Clin. Oncol. 22,2918-202656.Morris, K.A. and Haboubi, N.Y. (2015) Pelvicradiation therapy: be- tween delight and disaster. World J. Gastrointest. Surg.7, 279–28857.Theis, V.S. et al. (2010) Chronic radiationenteritis. Clin. Oncol. (R. Coll. Radiol.) 22, 70–8358.Wang, A. et al. (2015) Gut microbial dysbiosis maypredict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy:a pilot study. PLoS One 10, e012631259.Taur, Y. et al. (2012) Intestinal domination and therisk of bac- teremia in patients undergoing allogeneic hematopoietic stem celltransplantation. Clin. Infect. Dis. 55, 905–91460.Taur, Y. et al. (2014) The effects of intestinaltract bacterial diversity on mortality following allogeneic hematopoietic stem celltransplantation. Blood 124, 1174–118261.Taur, Y. et al. (2018) Reconstitution of the gutmicrobiota of antibiotic-treated patients by autologous fecal microbiota transplant.Sci. Transl. Med. 10, eaap948962.Zmora, N. et al. (2018) Personalized gut mucosalcolonization resistance to empiric probiotics is associated with unique hostand microbiome features. Cell 174, 1388–140563.Maldonado-Gomez, M.X. et al. (2016) Stableengraftment of Bifidobacterium longum AH1206 in the human gut depends onindividualized features of the resident microbiome. Cell Host Microbe 20,515–52664.Suez, J. et al. (2018) Post-antibiotic gut mucosalmicrobiome reconstitution is impaired by probiotics and improved by autologousFMT. Cell 174, 1406–142365.Baxter, N.T. et al. (2019) Dynamics of human gutmicrobiota and short-chain fatty acids in response to dietary interventions withthree fermentable fibers. MBio 10, e02566-1866.Rous, P. (1911) A sarcoma of the fowl transmissibleby an agent separable from the tumor cells. J. Exp. Med. 13, 397–41167.Stehelin, D. et al. (1976) DNA related to thetransforming gene (s) of avian sarcoma viruses is present in normal avian DNA. Nature260, 170–17368.Lollini, P.L. et al. (2006) Vaccines for tumourprevention. Nat. Rev. Cancer 6, 204–21669.Godoy-Vitorino, F. et al. (2018) Cervicovaginal fungiand bacteria associated with cervical intraepithelial neoplasia and high- riskhuman papillomavirus infections in a Hispanic population. Front. Microbiol. 9,253370.Rampelli, S. et al. (2016) ViromeScan: a new tool formetagenomic viral community profiling. BMC Genomics 17, 16571.Garretto, A. et al. (2019) virMine: automateddetection of viral sequences from complex metagenomic samples. PeerJ 7, e669572.Barrientos-Somarribas, M. et al. (2018) Discoveringviral ge- nomes in human metagenomic data by predicting unknown proteinfamilies. Sci. Rep. 8, 2873.Hannigan, G.D. et al. (2018) Diagnostic potential andinteractive dynamics of the colorectal cancer virome. MBio 9, e02248-1874.Ott, S.J. et al. (2017) Efficacy of sterile fecalfiltrate transfer for treating patients with Clostridium difficile infection.Gastroenterology 152, 799–81175.Zuo, T. et al. (2018) Bacteriophage transfer duringfaecal microbiota transplantation in Clostridium difficile infection is associatedwith treatment outcome. Gut 67, 634–64376.Hourigan, S.K. et al. (2019) Fecal transplant inchildren with Clostridioides difficile gives sustained reduction inantimicrobial resistance and potential pathogen burden. Open Forum Infect. Dis.6, ofz37977.Amieva, M. and Peek Jr., R.M. (2016) Pathobiology of Helicobacterpylori-Induced Gastric Cancer. Gastroenterology 150, 64–7878.Amiri, M. et al. (2011) The decline in stomach cancermortality: exploration of future trends in seven European countries. Eur. J.Epidemiol. 26, 23–2879.Linz, B. et al. (2007) An African origin for theintimate association between humans and Helicobacter pylori. Nature 445,915–91880.Blaser, M.J. and Atherton, J.C. (2004) Helicobacter pyloripersistence: biology and disease. J. Clin. Invest. 113, 321–333 81. Chen, C. etal. (2017) Accumulated evidence on Helicobacter pylori infection and the risk ofasthma: a meta-analysis. Ann. Allergy Asthma Immunol. 119, 137–14582.Kira, J.I. and Isobe, N. (2019) Helicobacter pyloriinfection and demyelinating disease of the central nervous system. J.Neuroimmunol. 329, 14–1983.Piovani, D. et al. (2019) Environmental risk factorsfor inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology157, 647–65984.Gravina, A.G. et al. (2018) Helicobacter pylori andextragastric diseases: a review. World J. Gastroenterol. 24, 3204–3221 85.Hosseininasab Nodoushan, S.A. and Nabavi, A. (2019) The interaction ofHelicobacter pylori infection and type 2 diabetes mellitus. Adv. Biomed. Res.8, 1586.Dzutsev, A. et al. (2017) Microbes and cancer. Annu.Rev. Immunol. 35, 199–22887.Redelman-Sidi, G. et al. (2014) The mechanism ofaction of BCG therapy for bladder cancer – a current perspective. Nat.Rev.Urol. 11, 153–16288.Earle, K.A. et al. (2015) Quantitative Imaging of gutmicrobiota spatial organization. Cell Host Microbe 18, 478–48889.Tropini, C. et al. (2017) The gut microbiome:connecting spatial organization to function. Cell Host Microbe 21, 433–44290.Mark Welch, J.L. et al. (2017) Spatial organizationof a model 15-member human gut microbiota established in gnotobiotic mice.Proc. Natl. Acad. Sci. U. S. A. 114, E9105–E911491.Moffitt, J.R. et al. (2016) High-performancemultiplexed fluores- cence in situ hybridization in culture and tissue withmatrix imprinting and clearing. Proc. Natl. Acad. Sci. U. S. A. 113, 14456–1446192.Ghaffarizadeh, A. et al. (2018) PhysiCell: an opensource physics-based cell simulator for 3-D multicellular systems. PLoS Comput.Biol. 14, e100599193.Ward, T. et al. (2017) BugBase predictsorganism-level microbiome phenotypes. bioRxiv. Published online May 7, 2017.https://doi.org/10.1101/13346294.Douglas, G.M. et al. (2019) PICRUSt2: an improved andextensible approach for metagenome inference. bioRxiv. Published online June15, 2019. https://doi.org/10.1101/67229595.Bolyen, E. et al. (2019) Reproducible, interactive,scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol.37, 852–85796.Xavier, J.B. et al. (2007) Multi-scaleindividual-based model of microbial and bioconversion dynamics in aerobicgranular sludge. Environ. Sci. Technol. 41, 6410–641797.Pasolli, E. et al. (2019) Extensive unexplored humanmicrobiome diversity revealed by over 150,000 genomes from metagenomes spanningage, geography, and lifestyle. Cell 176, 649–662.e2098.Smits, S.A. et al. (2017) Seasonal cycling in the gutmicrobiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–80699.Belkaid, Y. and Hand, T.W. (2014) Role of themicrobiota in immunity and inflammation. Cell 157, 121–141100.David, L.A. et al. (2014) Diet rapidly andreproducibly alters the human gut microbiome. Nature 505, 559–563101.Chassaing, B. et al. (2015) Dietary emulsifiersimpact the mouse gut microbiota promoting colitis and metabolic syndrome.Nature 519, 92–96102.Viennois, E. et al. (2017) Dietaryemulsifier-induced low-grade inflammation promotes colon carcinogenesis. CancerRes.77, 27–40103.Scudellari, M. (2017) Cleaning up the hygienehypothesis. Proc.Natl. Acad. Sci. U. S. A. 114, 1433–1436104.Vangay, P. et al. (2018) US immigration westernizesthe human gut microbiome. Cell 175, 962–972105.Bello, M.G.D. et al. (2018) Preserving microbialdiversity. Science 362, 33–34106.Rohlke, F. and Stollman, N. (2012) Fecal microbiotatransplantation in relapsing Clostridium difficile infection. Ther. Adv.Gastroenterol. 5, 403–420